1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>A Grammar of the Ithkuil Language - Chapter 12: The Number System</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<script language="JavaScript" type="text/JavaScript">
<!--
//-->onLoad="javascript:changenav12();"
</script>
<style type="text/css">
<!--
.style2 { font-family: Georgia, "Times New Roman", Times, serif;
font-weight: bold;
color: #999999;
}
.style6 {color: #000000; font-weight: bold;}
.style11 {font-weight: bold; font-family: Arial, Helvetica, sans-serif; color: #0000FF; font-size: small; }
.style25 {font-family: Geneva, Arial, Helvetica, sans-serif; font-weight: bold; }
.style26 {font-size: larger}
.style29 {
font-family: Geneva, Arial, Helvetica, sans-serif;
font-size: medium;
}
.style36 {font-size: smaller}
.style37 {font-weight: bold; font-size: smaller; font-family: Arial, Helvetica, sans-serif; }
.style39 {font-family: Arial, Helvetica, sans-serif; font-weight: bold;}
.style40 {font-family: Geneva, Arial, Helvetica, sans-serif; font-weight: bold; font-size: smaller; }
.style46 { font-family: Geneva, Arial, Helvetica, sans-serif;
font-style: italic;
font-weight: bold;
}
.style7 { font-size: large
}
-->
</style>
</head>
<body>
<h2 align="center" class="style2">Ithkuil: A Philosophical Design for a Hypothetical Language<br />
<img src="images/masthead.jpg" width="465" height="50"></h2>
<table width="88%" border="0" align="center">
<tr>
<td width="14%"><span class="style36"></span></td>
<td width="4%"><span class="style36"></span></td>
<td width="19%"><p class="style11"><span class="style36"></span></p></td>
<td width="23%"><p class="style11"><span class="style36"></span></p></td>
<td width="20%"><span class="style36"></span></td>
<td width="20%"><span class="style36"></span></td>
</tr>
<tr>
<td bgcolor="#CCCCCC"><span class="style37"><a href="index.htm">Home</a></span></td>
<td><span class="style36"></span></td>
<td height="24"><a href="00_intro.html"><span class="style37">Introduction</span></a></td>
<td><a href="04_case.html"><span class="style37">4 Case Morphology</span></a></td>
<td><a href="08_adjuncts.html"><span class="style37">8 Adjuncts</span></a></td>
<td><a href="12_numbers.htm"><span class="style37">12 The Number System</span></a></td>
</tr>
<tr>
<td bgcolor="#CCCCCC"><span class="style37"><a href="faqs.html">FAQs</a></span></td>
<td><span class="style36"></span></td>
<td height="18"><a href="01_phonology.html"><span class="style37">1 Phonology</span></a></td>
<td><a href="05_verbs_1.html"><span class="style37">5 Verb Morphology</span></a></td>
<td><a href="09_syntax.html"><span class="style37">9 Syntax</span></a></td>
<td><a href="abbreviations.html"><span class="style37">List of Abbreviations</span></a></td>
</tr>
<tr>
<td bgcolor="#CCCCCC"><span class="style37"><a href="updates.htm">Updates / News</a></span></td>
<td><span class="style36"></span></td>
<td height="18"><a href="02_morpho-phonology.html"><span class="style37">2 Morpho-Phonology</span></a></td>
<td><a href="06_verbs_2.html"><span class="style37">6 More Verb Morphology</span></a></td>
<td><a href="10_lexico-semantics.html"><span class="style37">10 Lexico-Semantics</span></a></td>
<td><a href="lexicon.htm"><span class="style37">The Lexicon</span></a></td>
</tr>
<tr>
<td></td>
<td><span class="style36"></span></td>
<td><a href="03_morphology.html"><span class="style37">3 Basic Morphology</span></a></td>
<td><a href="07_suffixes.html"><span class="style37">7 </span><span class="style37">Suffixes</span></a></td>
<td><a href="11_script.htm"><span class="style37">11 The Writing System</span></a></td>
<td><span class="style36"><span class="style39"><a href="texts.html">Texts</a></span></span></td>
</tr>
</table>
<p align="right" class="style46"> </p>
<p> </p>
<h2 align="center">Chapter 12: The Number System </h2>
<DIV align="center">
<TABLE cellSpacing="1" cellPadding="1" width="35%" border="0">
<TBODY>
<TR>
<TD width="358"><A href="#Sec12o1">12.1 Features of a Centesimal Number System</A></TD>
</TR>
<TR>
<TD><A href="#Sec12o2">12.2 Semantic Designations for Numerical Stems </A></TD>
</TR>
<TR>
<TD><A href="#Sec12o3">12.3 Expressing “Zero”</A></TD>
</TR>
<TR>
<TD><A href="#Sec12o4">12.4 Writing Numerals</A></TD>
</TR>
<TR>
<TD><A href="#Sec12o5">12.5 Using Numbers in Speech</A></TD>
</TR>
</TBODY>
</TABLE>
</DIV>
<p align="justify" class="style26"><br>
The Ithkuil system of numbers and counting is distinct from Western languages in two fundamental ways: it is centesimal (base one hundred) as opposed to decimal (base ten), and the numbers themselves are full formatives (i.e., nouns and verbs), not adjectives. This has already been discussed briefly in <A href="04_case.html#Sec4o5o1">Section 4.5.1</A> regarding the PARTITIVE case. This section will examine the numerical system in greater detail.</p>
<p align="justify" class="style26"> </p>
<p class="style26"><strong><a name="Sec12o1"></a></strong></p>
<DIV align="justify" class="style26">
<TABLE cellPadding="0" width="100%" bgColor="#cccccc" border="0">
<TBODY>
<TR>
<TD><p><strong>12.1 FEATURES OF A CENTESIMAL NUMBER SYSTEM</strong></p></TD>
</TR>
</TBODY>
</TABLE>
</DIV>
<p align="justify" class="style26">Being a centesimal system of enumeration, the numbers from zero to 100 are considered autonomous units represented by single stems and written using single autonomous symbols. Beginning with the number 101, numbers are referred to by the number of hundreds plus the number of units, just as a decimal system, beginning with the number 11, refers to the number of tens plus the number of units. However, where a decimal system then shifts to a unit referring to 100 once “10 tens” is reached, a centesimal system proceeds to the number 10,000 before establishing a new unit reference (i.e., “100 hundreds”). Thus the number 3254, which in a decimal system is 3 thousands — 2 hundreds — 5 tens — 4 ones, in a centesimal system becomes 32 hundreds—54 ones, and would be only two digits when written (the single character representing 32, and the single character representing 54). The details of writing Ithkuil numerals are given below in Section 12.5.</p>
<p align="justify" class="style26">After 100, separate unit numbers and symbols are assigned to the square of 100 (i.e. ten thousand, that being “100 hundreds”), then the square of that number, 100<sup>4</sup> (100 million, i.e., 10,000 ten-thousands). The final unit is 100<sup>8</sup>, that is, 10 quadrillion or 100 million hundred-millions, the last number for which Ithkuil assigns a separate root and symbol. After ten quadrillion, numbers are referred to as multiples of lower sets, similar to saying in English “one trillion quadrillion” instead of the equivalent “one octillion.”</p>
<p align="justify" class="style26">While the above may seem unwieldy or even arbitrary, it actually parallels Western base-ten numerals in terms of its systematization. For example, in a Western number like 456,321,777,123, each set of three numbers between the commas tells how many hundreds there are of a certain power of 1000 (i.e., there are 123 of 1000<sup>0</sup>, 777 of 1000<sup>1</sup>, 321 of 1000<sup>2</sup>, and 456 of 1000<sup>3</sup>, or in more common terms 123 ones, 777 thousands, 321 millions, 456 billions).</p>
<p align="justify" class="style26">The same exact system holds for Ithkuil, except that the sets of numbers “between the commas” so to speak, is the number of ten-thousands, not thousands. Thus, if we were to rewrite the Western number 456,321,777,123 in such a system, it would be <STRONG>4563,2177,7123</STRONG> (i.e., 7123 of 10000<sup>0</sup>, 2177 of 10000<sup>1</sup>, and 4563 of 10000<sup>2</sup>, that being 7123 ones, 2177 ten-thousands, and 4563 hundred-millions). </p>
<p class="style26"> </p>
<DIV align="justify" class="style26">
<TABLE cellPadding="0" width="100%" bgColor="#cccccc" border="0">
<TBODY>
<TR>
<TD><p><STRONG>12.2 SEMANTIC DESIGNATIONS FOR NUMERICAL STEMS<A name="Sec12o2"></A></STRONG></p></TD>
</TR>
</TBODY>
</TABLE>
</DIV>
<p align="justify" class="style26">The semantic roots for numbers in Ithkuil from 1 to 99 are based on roots for 1 through 10, to which the nine degrees of the Slot XI derivational affix <STRONG>-Vk</STRONG> are added. Each of the nine degrees of this suffix, when applied to one of the ten number-roots, corresponds to an additional multiple of ten. This is illustrated in Table 64 below.<BR>
</p>
<p align="justify" class="style26"><STRONG>Table 64: The SSD Affix with Numerals</STRONG></p>
<table width="900" border="1">
<tr>
<td width="58" class="style26"><strong>Degree</strong></td>
<td width="93" class="style26"><strong>Suffix</strong></td>
<td width="116" class="style26"><strong>Meaning</strong></td>
<td width="12" rowspan="4" class="style26"> </td>
<td width="51" class="style26"><strong>Degree</strong></td>
<td width="100" class="style26"><strong>Suffix</strong></td>
<td width="116" class="style26"><strong>Meaning</strong></td>
<td width="12" rowspan="4" class="style26"> </td>
<td width="51" class="style26"><strong>Degree</strong></td>
<td width="100" class="style26"><strong>Suffix</strong></td>
<td width="121" class="style26"><strong>Meaning</strong></td>
</tr>
<tr>
<td class="style26">1</td>
<td class="style26"><span class="style25">-ik</span></td>
<td class="style26">stem + 10</td>
<td class="style26">4</td>
<td class="style26"><span class="style25">-îk / -uëk</span></td>
<td class="style26">stem + 40</td>
<td class="style26">7</td>
<td class="style26"><span class="style25">-ok</span></td>
<td class="style26">stem + 70</td>
</tr>
<tr>
<td class="style26">2</td>
<td class="style26"><span class="style25">-ök</span></td>
<td class="style26">stem + 20</td>
<td class="style26">5</td>
<td class="style26"><span class="style25">-ak</span></td>
<td class="style26">stem + 50</td>
<td class="style26">8</td>
<td class="style26"><span class="style25">-ük / -aek</span></td>
<td class="style26">stem + 80</td>
</tr>
<tr>
<td class="style26">3</td>
<td class="style26"><span class="style25">-ek</span></td>
<td class="style26">stem + 30</td>
<td class="style26">6</td>
<td class="style26"><span class="style25">-ûk / -iëk</span></td>
<td class="style26">stem + 60</td>
<td class="style26">9</td>
<td class="style26"><span class="style25">-uk</span></td>
<td class="style26">stem + 90</td>
</tr>
</table>
<p align="justify" class="style26"> </p>
<p align="justify" class="style26">The addition of a particular degree of this affix to one of the ten indicates that the root number is added to that multiple of ten. For example, the stem <STRONG>ksal</STRONG> ‘two,’ plus the seventh degree affix <STRONG>-Vk/7</STRONG>, gives <STRONG>ksalok</STRONG> ‘seventy-two.’ Because there is no root corresponding to ‘zero’ (see <A href="#Sec12o3">Sec. 12.3</A> below), each multiple of ten is constructed using stem <strong>mřal</strong> ‘ten’ plus one of the above suffixes. Thus, the numbers 20, 30 and 40 are respectively <STRONG>mřalik</STRONG>, <STRONG>mřal<strong>ö</strong>k</STRONG> and <STRONG>mřalek</STRONG>, but the numbers 22, 32 and 42 are <STRONG>ksal<strong>ö</strong>k</STRONG>, <strong>ksalek</strong>, and <STRONG>ksalîk</STRONG>. This pattern only operates up to the nineties, as there is a separate autonomous root for 100, -<strong>ň</strong>-.</p>
<p align="justify" class="style26">Since numbers are formatives in Ithkuil, not adjectives as in most Western languages, holistic stem No. 1 is a formative signifying a set containing a number of members corresponding to that particular root. Thus, the formative <STRONG><strong>k</strong>s<strong>a</strong>l</STRONG>, translatable as ‘two,’ actually means ‘a set of two; a duo / to be a duo.’ In turn, the two complementary derivatives of each stem denote its multiple and its fraction respectively. This is illustrated below for both Form I and II using the roots <STRONG>-ks-</STRONG>, TWO, and <STRONG>-ns-</STRONG>, meaning SEVEN:</p>
<p align="justify" class="style26">For <STRONG><strong>-</strong>ks-</STRONG>, TWO:</p>
<p class="style26">1. <STRONG><strong>k</strong>s<strong>a</strong>l / a<strong>k</strong>sál</STRONG> <EM>‘a set of two, a duo; to be two in number’</EM></p>
<BLOCKQUOTE class="style26">
<p>COMPLEMENTARY DERIVATIVES:<BR>
<STRONG>oksal / oks<strong>ál</strong></STRONG>: <EM>‘twice the number of something; to double, to multiply by two’</EM><BR>
<STRONG>âksal / âks<strong>ál</strong></STRONG>: <EM>‘a half; to halve, to be or make half, to divide by or in two’</EM></p>
</BLOCKQUOTE>
<p class="style26">2. <strong>eksal / eks<strong>ál</strong></strong> <EM>‘to be or make dual; having two uses or aspects; bi-; twofold’ </EM></p>
<BLOCKQUOTE class="style26">
<p>COMPLEMENTARY DERIVATIVES:<BR>
<STRONG>ök<strong>sal</strong> / ök<strong>s<strong>ál</strong></strong></STRONG>: <EM>‘two times (i.e., iterations), twice; to be/do/make twice’</EM><BR>
<STRONG>êks<strong>al</strong> / êk<strong>s<strong>ál</strong></strong></STRONG>: <EM>‘to be of or make into two parts; bifurcate(d)’</EM></p>
</BLOCKQUOTE>
<p class="style26">3. <STRONG><strong>uksal / uks<strong>ál</strong></strong></STRONG> <EM>‘the second one in a sequence; to be or make second (in a sequence)’</EM></p>
<BLOCKQUOTE class="style26">
<p>COMPLEMENTARY DERIVATIVES:<BR>
<STRONG>ûk<strong>sal</strong> / ûk<strong>s<strong>ál</strong></strong></STRONG>: ‘to the second power, squared; to square, raise to the 2nd power<EM>’</EM><BR>
<STRONG>ôks<strong>al</strong> / ôk<strong>s<strong>ál</strong></strong></STRONG>: <EM>‘to the negative second power, the inverse square; to divide by the square of’</EM></p>
</BLOCKQUOTE>
<p class="style26">For -<STRONG>ns-</STRONG>, SEVEN:</p>
<p class="style26">1.<STRONG><strong> n</strong>s<strong>a</strong>l / a<strong>n</strong>sál</STRONG> ‘a set/group of seven, a septet; to be seven in number’</p>
<BLOCKQUOTE class="style26">
<p>COMPLEMENTARY DERIVATIVES:<BR>
<STRONG>onsal / ons<strong>ál</strong></STRONG>: <EM>‘7 times the number of something; to multiply by 7; septuple’</EM><BR>
<STRONG>ânsal / âns<strong>ál</strong></STRONG>: <EM>‘a seventh; to be or make a 7th part of something, to divide by 7 or into 7 parts’</EM></p>
</BLOCKQUOTE>
<p class="style26">2.<strong> ensal / ens<strong>ál </strong></strong>‘to be or make seven-faceted; having 7 uses or aspects; septi-; sevenfold’ </p>
<BLOCKQUOTE class="style26">
<p>COMPLEMENTARY DERIVATIVES:<BR>
<STRONG>ön<strong>sal</strong> / ön<strong>s<strong>ál</strong></strong></STRONG>: <EM>‘7 times (i.e., iterations); to be/do/make 7 times’</EM><BR>
<STRONG>êns<strong>al</strong> / ên<strong>s<strong>ál</strong></strong></STRONG>: <EM>‘to be of or make into 7 parts; separate(d) into 7 parts’</EM></p>
</BLOCKQUOTE>
<p class="style26">3.<STRONG><strong> unsal / uns<strong>ál</strong></strong></STRONG><EM> ‘the seventh one in a sequence; to be or make 7th (in a sequence)’ </EM></p>
<BLOCKQUOTE class="style26">
<p>COMPLEMENTARY DERIVATIVES:<BR>
<STRONG>ûn<strong>sal</strong> / ûn<strong>s<strong>ál</strong></strong></STRONG>: <EM>‘to the 7th power; to raise to the 7th power’ </EM><BR>
<STRONG>ôns<strong>al</strong> / ôn<strong>s<strong>ál</strong></strong></STRONG>: <EM>‘to the negative 7th power; to divide by the 7th power of’ </EM></p>
</BLOCKQUOTE>
<p align="justify" class="style26">In addition to the above-described roots, there is the root <strong>-ll-</strong>, ONE/UNITY. As this root has no multiples, its semantic designations follow a unique pattern. NOTE: The INFORMAL versus FORMAL distinction in this root (i.e., Form I versus Form II of each stem) distinguishes between a focus on non-duplication/singularity for the INFORMAL, and indivisibility/unity for the FORMAL:</p>
<p class="style26">1.<STRONG><strong> lla</strong>l / a<strong>ll</strong>ál</STRONG> <EM>‘a single entity; to be one in number’ </EM></p>
<BLOCKQUOTE class="style26">
<p>COMPLEMENTARY DERIVATIVES:<BR>
<STRONG>ollal / oll<strong>ál</strong></STRONG>: <EM>‘to be indivisible, whole, a single unit; unitary; to unify’</EM><BR>
<STRONG>âllal / âll<strong>ál</strong></STRONG>: <EM>‘to be (an) individual, a distinct entity in itself; to individualize’</EM></p>
</BLOCKQUOTE>
<p class="style26">2.<strong> ellal / ell<strong>ál</strong></strong> ‘a lone entity, something alone; an entity in solitude, something/someone isolated; be alone; to isolate; be in solitude’</p>
<BLOCKQUOTE class="style26">
<p>COMPLEMENTARY DERIVATIVES:<BR>
<STRONG>öll<strong>al</strong> / öll<strong><strong>ál</strong></strong></STRONG>: <EM>‘something/someone lonely; be or make lonely’</EM><BR>
<STRONG>êll<strong>al</strong> / êll<strong><strong>ál</strong></strong></STRONG>: <EM>‘something/someone independent, self-sufficient, singular (i.e., without need of, connection to, or dependency on others); be or make independent, self-sufficient, singular’</EM></p>
</BLOCKQUOTE>
<p class="style26">3.<STRONG><strong> ullal / ull<strong>ál</strong></strong></STRONG> ‘something/someone unique, the only one; to be or make unique’</p>
<BLOCKQUOTE class="style26">
<p>COMPLEMENTARY DERIVATIVES:<BR>
<STRONG>ûll<strong>al</strong> / ûll<strong><strong>ál</strong></strong></STRONG>: <EM>‘a sole entity, the only one available or able (in terms of sufficiency or applicability to the context)’</EM><BR>
<STRONG>ôll<strong>al</strong> / ôll<strong><strong>ál</strong></strong></STRONG>: <EM>‘something/someone one-of-a-kind, unparalleled, without equal or peer (in terms of uniqueness of characteristics)’</EM></p>
</BLOCKQUOTE>
<p class="style26"><BR>
The Ithkuil numerical roots as described in the section above are as follows:</p>
<TABLE width="75%" border="1" align="center" cellPadding="1">
<TBODY>
<TR>
<TD class="style26"><DIV align="center">-<strong>ll</strong>-</DIV></TD>
<TD class="style26"><DIV align="center">-<strong>ks</strong>-</DIV></TD>
<TD class="style26"><DIV align="center">-<strong>ţk</strong>-</DIV></TD>
<TD class="style26"><DIV align="center">-<strong>px</strong>-</DIV></TD>
<TD class="style26"><DIV align="center">-<strong>sţ</strong>-</DIV></TD>
<TD class="style26"><DIV align="center">-<strong>cq</strong>-</DIV></TD>
<TD class="style26"><DIV align="center">-<strong>ns</strong>-</DIV></TD>
<TD class="style26"><DIV align="center">-<strong>fy</strong>-</DIV></TD>
<TD class="style26"><DIV align="center">-<strong>xm</strong>-</DIV></TD>
<TD class="style26"><DIV align="center">-<strong>mř</strong>-</DIV></TD>
</TR>
<TR>
<TD class="style26"><DIV align="center"><EM>one</EM></DIV></TD>
<TD class="style26"><DIV align="center"><EM>two</EM></DIV></TD>
<TD class="style26"><DIV align="center"><EM>three</EM></DIV></TD>
<TD class="style26"><DIV align="center"><EM>four</EM></DIV></TD>
<TD class="style26"><DIV align="center"><EM>five</EM></DIV></TD>
<TD class="style26"><DIV align="center"><EM>six</EM></DIV></TD>
<TD class="style26"><DIV align="center"><EM>seven</EM></DIV></TD>
<TD class="style26"><DIV align="center"><EM>eight</EM></DIV></TD>
<TD class="style26"><DIV align="center"><EM>nine</EM></DIV></TD>
<TD class="style26"><DIV align="center"><EM>ten</EM></DIV></TD>
</TR>
</TBODY>
</TABLE>
<span class="style26"><BR>
</span>
<TABLE width="75%" border="1" align="center" cellPadding="1">
<TBODY>
<TR>
<TD width="19%" class="style26"><DIV align="center">-<strong>ň</strong>-</DIV></TD>
<TD width="22%" class="style26"><div align="center">-<strong>zm</strong>-</div></TD>
<TD width="27%" class="style26"><div align="center">-<strong>pstw</strong>-</div></TD>
<TD width="32%" class="style26"><div align="center">-<strong>čk<sup>h</sup></strong>-</div></TD>
</TR>
<TR>
<TD class="style26"><DIV align="center"><EM>one hundred</EM></DIV></TD>
<TD class="style26"><DIV align="center"><EM>ten thousand</EM></DIV></TD>
<TD class="style26"><DIV align="center"><EM>one hundred million</EM></DIV></TD>
<TD class="style26"><DIV align="center"><EM>ten quadrillion</EM></DIV></TD>
</TR>
</TBODY>
</TABLE>
<p class="style26"> </p>
<p class="style26"><strong><a name="Sec12o3"></a></strong></p>
<TABLE cellPadding="0" width="99%" bgColor="#cccccc" border="0">
<TBODY>
<TR>
<TD class="style26"><p><STRONG>12.3 EXPRESSING “ZERO”</STRONG></p></TD>
</TR>
</TBODY>
</TABLE>
<p align="justify" class="style26">Ithkuil has no word for “zero” nor is it conceptualized as a numerical category. Instead any appropriate formative may take the <strong>PTW</strong> suffix in first-degree -<strong>iss</strong> <EM>‘no amount of’</EM> or the <strong>EXN</strong> suffix in first-degree <strong>-ib</strong> <EM>‘no…at all’</EM> in terms of degree or extent to create negative expressions that convey the idea of an absence of a numerical entity or quantity. In many cases, simply the negative of whatever formative is under discussion may be used. </p>
<p align="justify" class="style26">As for handling the concept of zero as a null placeholder when writing Ithkuil numbers, this is addressed in Section 12.4 below.</p>
<p class="style26"> </p>
<TABLE cellPadding="0" width="99%" bgColor="#cccccc" border="0">
<TBODY>
<TR>
<TD class="style26"><p><STRONG>12.4 WRITING NUMERALS<A name="Sec12o4"></A></STRONG></p></TD>
</TR>
</TBODY>
</TABLE>
<p align="justify" class="style26">Writing Ithkuil numerals is somewhat similar to writing numbers in Western languages (i.e., “Arabic” numerals), in that the interpretation of a number as a different power of 100 (analogous to interpreting single Arabic numerals as either ones, tens, hundreds, thousands, etc.) is based on its sequence within the entire number. However, there are two aspects of writing Ithkuil numbers that are quite different from Arabic numbers.:</p>
<OL class="style26">
<LI>
<DIV align="justify">Ithkuil does not employ a symbol for zero. Instead, Ithkuil employs separate autonomous symbols for each power of 100 (100, 10,000, 100 million, etc.) each of which operates as the appropriate placeholder instead of zero. To illustrate what this means by analogy, pretend that “@” is an autonomous symbol for 27 (since Ithkuil numbers from 1 to 99 each have a separate symbol), “&” is a symbol for 100, “#” is a symbol for 10,000 and there is no symbol 0 (zero). The numbers 2700, 2705, 327, 22700 and 4,270,027 would then be written @&, @5, 3@, 2@&, and 4@#@ respectively. (NOTE: In actual practice, numbers which contain the “hundred” symbol, here represented as “&,” normally place a dot above or below the adjacent numeral and dispense with the &, indicating that the number so marked is to be multiplied by 100. <br>
<BR>
</DIV>
<LI>
<DIV align="justify">Since Ithkuil is a base-100 system, numbers do not become two digits in length until the hundreds, do not become three digits in length until the ten thousands, do not become four digits in length until the millions, etc.</DIV>
</LI>
</OL>
<p align="justify" class="style26"> </p>
<p align="justify" class="style26">One must also remember that in terms of left-to-right orientation, numbers follow the <EM>boustrophedon</EM> mode the same as the Ithkuil script (see <A href="ithkuil-ch11-script.htm#Sec11o3o2">Sec. 11.3.2</A>). Similarly to Western languages, small non-compound numbers can be written using either their numerical symbols or written out in script (as in English “12” versus “twelve”).</p>
<p align="justify" class="style26">The following table gives the Ithkuil numerical symbols along with their morphological stems. The symbols for 11 through 99 consist of the symbols for 1 through 9 plus various extensions added to their lower left “trailing” line indicating the particular 10-group to be added.<BR>
<BR>
<STRONG>Table 65: ITHKUIL NUMERICAL STEMS AND WRITTEN SYMBOLS</STRONG><BR>
<BR>
</p>
<TABLE width="75%" border="1" align="center" cellPadding="1">
<TR>
<TD height="53" class="style26"><div align="center"><img src="images/12-symbol-01.jpg" width="29" height="44" /></div></TD>
<TD class="style26"><div align="center"><img src="images/12-symbol-02.jpg" width="31" height="45" /></div></TD>
<TD class="style26"><div align="center"><img src="images/12-symbol-03.jpg" width="24" height="44" /></div></TD>
<TD class="style26"><div align="center"><img src="images/12-symbol-04.jpg" width="24" height="44" /></div></TD>
<TD class="style26"><div align="center"><img src="images/12-symbol-05.jpg" width="23" height="44" /></div></TD>
<TD class="style26"><div align="center"><img src="images/12-symbol-06.jpg" width="24" height="46" /></div></TD>
<TD class="style26"><div align="center"><img src="images/12-symbol-07.jpg" width="24" height="50" /></div></TD>
<TD class="style26"><div align="center"><img src="images/12-symbol-08.jpg" alt="" width="29" height="44" /></div></TD>
<TD class="style26"><div align="center"><img src="images/12-symbol-09.jpg" width="25" height="48" /></div></TD>
<TD class="style26"><div align="center"><img src="images/12-symbol-10.jpg" width="24" height="47" /></div></TD>
</TR>
<TBODY>
<TR>
<TD class="style26"><DIV align="center"><strong>llal</strong></DIV></TD>
<TD class="style26"><DIV align="center"><strong>ksal</strong></DIV></TD>
<TD class="style26"><DIV align="center"><strong>ţkal</strong></DIV></TD>
<TD class="style26"><DIV align="center"><strong>pxal</strong></DIV></TD>
<TD class="style26"><DIV align="center"><strong>sţal</strong></DIV></TD>
<TD class="style26"><DIV align="center"><strong>cqal</strong></DIV></TD>
<TD class="style26"><DIV align="center"><strong>nsal</strong></DIV></TD>
<TD class="style26"><DIV align="center"><strong>fyal</strong></DIV></TD>
<TD class="style26"><DIV align="center"><strong>xmal</strong></DIV></TD>
<TD class="style26"><DIV align="center"><strong>mřal</strong></DIV></TD>
</TR>
<TR>
<TD class="style26"><DIV align="center">1</DIV></TD>
<TD class="style26"><DIV align="center">2</DIV></TD>
<TD class="style26"><DIV align="center">3</DIV></TD>
<TD class="style26"><DIV align="center">4</DIV></TD>
<TD class="style26"><DIV align="center">5</DIV></TD>
<TD class="style26"><DIV align="center">6</DIV></TD>
<TD class="style26"><DIV align="center">7</DIV></TD>
<TD class="style26"><DIV align="center">8</DIV></TD>
<TD class="style26"><DIV align="center">9</DIV></TD>
<TD class="style26"><DIV align="center">10</DIV></TD>
</TR>
</TBODY>
</TABLE>
<blockquote>
<blockquote>
<p align="justify" class="style26"> extensions:<BR>
</p>
</blockquote>
</blockquote>
<TABLE width="75%" border="1" align="center" cellPadding="1">
<TBODY>
<TR>
<TD height="84" class="style26"><div align="center"><img src="images/12-extension+10.jpg" width="34" height="62" /></div></TD>
<TD class="style26"><div align="center"><img src="images/12-extension+20.jpg" width="34" height="58" /></div></TD>
<TD class="style26"><div align="center"><img src="images/12-extension+30.jpg" width="42" height="63" /></div></TD>
<TD class="style26"><div align="center"><img src="images/12-extension+40.jpg" alt="" width="34" height="71" /></div></TD>
<TD class="style26"><div align="center"><img src="images/12-extension+50.jpg" width="35" height="64" /></div></TD>
<TD class="style26"><div align="center"><img src="images/12-extension+60.jpg" width="34" height="61" /></div></TD>
<TD class="style26"><div align="center"><img src="images/12-extension+70.jpg" alt="" width="34" height="61" /></div></TD>
<TD class="style26"><div align="center"><img src="images/12-extension+80.jpg" alt="" width="32" height="55" /></div></TD>
<TD class="style26"><div align="center"><img src="images/12-extension+90.jpg" width="34" height="47" /></div></TD>
</TR>
<TR>
<TD class="style26"><DIV align="center">+10</DIV></TD>
<TD class="style26"><DIV align="center">+20</DIV></TD>
<TD class="style26"><DIV align="center">+30</DIV></TD>
<TD class="style26"><DIV align="center">+40</DIV></TD>
<TD class="style26"><DIV align="center">+50</DIV></TD>
<TD class="style26"><DIV align="center">+60</DIV></TD>
<TD class="style26"><DIV align="center">+70</DIV></TD>
<TD class="style26"><DIV align="center">+80</DIV></TD>
<TD class="style26"><DIV align="center">+90</DIV></TD>
</TR>
</TBODY>
</TABLE>
<p align="justify" class="style26"><BR>
</p>
<TABLE width="75%" border="1" align="center" cellPadding="1">
<TBODY>
<TR>
<TD class="style26"><div align="center"><img src="images/12-symbol-100.jpg" width="21" height="41" /></div></TD>
<TD class="style26"><div align="center"><img src="images/12-symbol-10-thousand.jpg" width="26" height="43" /></div></TD>
<TD class="style26"><div align="center"><img src="images/12-symbol-100-million.jpg" width="39" height="40" /></div></TD>
<TD class="style26"><div align="center"><img src="images/12-symbol-10-quadrillion.jpg" width="23" height="39" /></div></TD>
</TR>
<TR>
<TD width="19%" class="style26"><DIV align="center"><strong>ňal</strong></DIV></TD>
<TD width="22%" class="style26"><div align="center"><strong>zmal</strong></div></TD>
<TD width="27%" class="style26"><div align="center"><strong>pstwal</strong></div></TD>
<TD width="32%" class="style26"><div align="center"><strong>čk<sup>h</sup>al</strong></div></TD>
</TR>
<TR>
<TD class="style26"><DIV align="center">100</DIV></TD>
<TD class="style26"><DIV align="center">10 000</DIV></TD>
<TD class="style26"><DIV align="center">100 000 000</DIV></TD>
<TD class="style26"><DIV align="center">10 000 000 000 000 000</DIV></TD>
</TR>
</TBODY>
</TABLE>
<p align="justify" class="style26"><BR>
</p>
<p class="style26"> </p>
<TABLE cellPadding="0" width="99%" bgColor="#cccccc" border="0">
<TBODY>
<TR>
<TD class="style26"><p><STRONG>12.5 USING NUMBERS IN SPEECH<A name="Sec12o5"></A></STRONG></p></TD>
</TR>
</TBODY>
</TABLE>
<p align="justify" class="style26">Spoken numbers are formed from the above stems using both the PARTITIVE and COMITATIVE cases, as well as using the coordinative affix <STRONG>-V<span class="style6">ň</span>/1</STRONG> (= -<STRONG>i<strong><span class="style6">ň</span></strong></STRONG>). The number of largest base units is shown by placing the base-unit term in the PARTITIVE. If this is then followed by another collection of smaller base units, that number of smaller base units is connected using the COMITATIVE case while the smaller base-unit term is again in the PARTITIVE. Single units (from 1 to 99) are connected by the coordinative affix when they are part of the number of hundreds or higher base-units. </p>
<p align="justify" class="style26">It should be noted that when pronouncing numbers greater than 199, it is normal in Ithkuil to omit the word <STRONG><strong><strong><span class="style6">ň</span></strong>ial</strong></STRONG> (= the PARTITIVE of <STRONG><strong><span class="style6">ň</span></strong>al</STRONG> ‘one hundred’) referring to the number of hundreds. This is equivalent to the custom in colloquial English of saying ‘three twelve’ for ‘three hundred (and) twelve.’ The difference is that in Ithkuil, this omission of the word for ‘hundred’ is the preferred option, the word <strong><strong><strong><span class="style6">ň</span></strong>ial</strong></strong> being used only in larger numbers for clarity’s sake.</p>
<p align="justify" class="style26">These principles are illustrated by the following examples:</p>
<blockquote>
<p class="style26"><strong><img src="images/12-example01.jpg" width="52" height="52" /><br>
ksalîk (ňial) xmalök</strong><br>
literally: “42 (of hundreds) 29”<BR>
<EM><STRONG>4229</STRONG></EM> </p>
<p class="style26"><BR>
</p>
<p class="style26"><strong><img src="images/12-example02.jpg" width="68" height="49" /><br>
cqalök zmial nseuluk (ňial) cqalûk</strong><BR>
literally: “26 of ten-thousands with 97 (of hundreds) 66” = 26,9766<BR>
<EM><STRONG>269,766</STRONG></EM></p>
<p class="style26"><EM><STRONG><BR>
</STRONG></EM></p>
<p class="style26"><strong><img src="images/12-example03.jpg" width="75" height="46" /><br>
llalök ňial zmual</strong><BR>
literally: “21 of hundred of ten-thousands”<BR>
<STRONG><EM>21,000,000</EM></STRONG> <BR>
[NOTE: <strong><strong><strong><span class="style6">ň</span></strong>ial</strong></strong> is required in this example]</p>
<p class="style26"><BR>
<strong><img src="images/12-example04.jpg" width="162" height="53" /><br>
ksalok ňial xmalokiň apstwial ţkeul ňial ţkalakiň zmual pxeulek mřalûk</strong><BR>
literally: <BR>
“72 of hundreds and 79 of hundred-millions with 3 of hundreds and 53 of ten-thousands with 34 60” <BR>
<em><STRONG>727,903,533,460</STRONG></em></p>
</blockquote>
<p align="justify" class="style26"><BR>
We have already seen that when numbers are used to indicate how many of a certain noun there are, the noun must appear in the PARTITIVE case, since the number itself is functioning as the “head” of the numerical expression (e.g., English “12 boxes” being constructed in Ithkuil as a “12-set of a box” or perhaps more appropriately a “box-dozen”). Another syntactical consequences of numbers being full formatives is when a number functions as a label or overt identifier, as in the English sentence <EM>You’ll find him in Room 216.</EM> Such usage of numbers is not primarily sequential (which would involve the equivalent of “ordinal” numbers such as ‘fourth,’ ‘twenty-sixth’, etc. equivalent to stem No. 3 of each number root) but rather organizational (e.g., as in the three-dimensional array of room numbers in a hotel). Ithkuil handles such organizational labeling using either the COMPARATIVE case (see <A href="04_case.html#Sec4o5o32">Sec. 4.5.32</A>) or the ESSIVE case (see <A href="04_case.html#Sec4o5o9">Sec. 4.5.9</A>) depending respectively on whether the enumeration of the noun in question is to distinguish it from other enumerated nouns versus merely identifying the noun by a numerical name. Examples:</p>
<p class="style26"><br>
<img src="images/12-5a.jpg" width="104" height="36" /><BR>
<strong>açtál ksou’lik</strong><br>
<span class="style29">‘room’-OBL ‘twelve’-CMP</span><BR>
<EM>‘the room marked “12”’ </EM><STRONG>OR</STRONG><EM> ‘Room 12’ </EM><STRONG>OR</STRONG><EM> ‘Room No. 12’</EM> [i.e., as opposed to being some other room]</p>
<p class="style26"> </p>
<p class="style26"><img src="images/12-5b.jpg" width="112" height="37" /><BR>
<strong>açtál ksealik</strong><br>
<span class="style29">‘room’-OBL ‘twelve’-ESS</span><BR>
<EM>‘the room marked “12”’ </EM><STRONG>OR</STRONG><EM> ‘Room 12’ </EM><STRONG>OR</STRONG><EM> ‘Room No. 12’</EM> [identifying reference only]</p>
<p align="justify" class="style26"><BR>
Lastly, when numbers comprising multiple number-stems are declined for case, configuration, extension, etc., rather than writing out the entire number “long-hand,” the number symbol is used, preceded by the carrier stem <EM><STRONG>ep-</STRONG></EM> (see <A href="09_syntax.html#Sec9o3">Sec. 9.3</A>) which carries the appropriate declensions. This use of the carrier stem applies even to single-stemmed numbers when writing, in order to allow use of the number symbol instead of writing it out. In such cases involving single-stemmed numbers, the carrier stem is not pronounced (rather, the numerical stem bears the pronounced declensions); it is there only as a written indicator of the morphological declensions/derivations to be applied to the number stem. </p>
<p class="style26"> </p>
<p align="justify"> </p>
<p align="left"> </p>
<blockquote>
<table width="88%" border="0" align="center">
<tr>
<td width="14%"><span class="style36"></span></td>
<td width="4%"><span class="style36"></span></td>
<td width="19%"><p class="style11"><span class="style36"></span></p></td>
<td width="23%"><p class="style11"><span class="style36"></span></p></td>
<td width="20%"><span class="style36"></span></td>
<td width="20%"><span class="style36"></span></td>
</tr>
<tr>
<td bgcolor="#CCCCCC"><span class="style37"><a href="index.htm">Home</a></span></td>
<td><span class="style36"></span></td>
<td height="24"><a href="00_intro.html"><span class="style37">Introduction</span></a></td>
<td><a href="04_case.html"><span class="style37">4 Case Morphology</span></a></td>
<td><a href="08_adjuncts.html"><span class="style37">8 Adjuncts</span></a></td>
<td><a href="12_numbers.htm"><span class="style37">12 The Number System</span></a></td>
</tr>
<tr>
<td bgcolor="#CCCCCC"><span class="style37"><a href="faqs.html">FAQs</a></span></td>
<td><span class="style36"></span></td>
<td height="18"><a href="01_phonology.html"><span class="style37">1 Phonology</span></a></td>
<td><a href="05_verbs_1.html"><span class="style37">5 Verb Morphology</span></a></td>
<td><a href="09_syntax.html"><span class="style37">9 Syntax</span></a></td>
<td><a href="abbreviations.html"><span class="style37">List of Abbreviations</span></a></td>
</tr>
<tr>
<td bgcolor="#CCCCCC"><span class="style37"><a href="updates.htm">Updates / News</a></span></td>
<td><span class="style36"></span></td>
<td height="18"><a href="02_morpho-phonology.html"><span class="style37">2 Morpho-Phonology</span></a></td>
<td><a href="06_verbs_2.html"><span class="style37">6 More Verb Morphology</span></a></td>
<td><a href="10_lexico-semantics.html"><span class="style37">10 Lexico-Semantics</span></a></td>
<td><a href="lexicon.htm"><span class="style37">The Lexicon</span></a></td>
</tr>
<tr>
<td></td>
<td><span class="style36"></span></td>
<td><a href="03_morphology.html"><span class="style37">3 Basic Morphology</span></a></td>
<td><a href="07_suffixes.html"><span class="style37">7 </span><span class="style37">Suffixes</span></a></td>
<td><a href="11_script.htm"><span class="style37">11 The Writing System</span></a></td>
<td><span class="style36"><span class="style39"><a href="texts.html">Texts</a></span></span></td>
</tr>
</table>
</blockquote>
<p> </p>
<table width="98%" border="0">
<tr>
<td width="18%" height="219"><a href="http://www.lulu.com/shop/john-quijada/a-grammar-of-the-ithkuil-language/paperback/product-18708279.html" target="_blank"><img src="images/front_cover-small.png" alt="Cover of Ithkuil Grammar book" width="164" height="212" border="0" /></a></td>
<td width="66%" valign="top"><p class="style26"> </p>
<p class="style26">For those who would like a copy of the Ithkuil Grammar<br />
in book form, <a href="http://www.lulu.com/shop/john-quijada/a-grammar-of-the-ithkuil-language/paperback/product-18708279.html" target="_blank">it is now available!</a> </p>
<p align="right" class="style26">And while you’re at it, you can check out the novel I co-<br />
wrote with my twin brother Paul, <a href="http://www.lulu.com/shop/john-paul-quijada/beyond-antimony/paperback/product-18831117.html" target="_blank">also now available!</a> </p>
<p align="right"><span class="style26">(It’s a political thriller/science fiction story that explores the<br />
philosophical implications of quantum physics, and features<br />
Ithkuil as a “para-linguistic” interface to a quantum computer.)</span></p></td>
<td width="16%" valign="middle"><p class="style7"><a href="http://www.lulu.com/shop/john-paul-quijada/beyond-antimony/paperback/product-18831117.html" target="_blank"><img src="images/front_cover-novel.png" alt="Cover of "Beyond Antimony" by John & Paul Quijada" width="149" height="217" border="0" align="top" /></a></p></td>
</tr>
</table>
<p> </p>
<p> </p>
<p> </p>
<blockquote>
<p align="justify">©2004-2019 by John Quijada. You may copy or excerpt any portion of the contents of this website for private, individual, or personal use which is non-commercial in nature and not for purposes of profit. Otherwise, you may copy or excerpt brief portions of the contents of this website in published, web-accessible, or commercially distributed articles, papers or webpages for purposes of review, commentary or analysis, provided you give full attribution to the author and this website. </p>
</blockquote>
<blockquote>
<p></p>
</blockquote>
<!-- Start of StatCounter Code -->
<script type="text/javascript">
var sc_project=7057807;
var sc_invisible=1;
var sc_security="86f5bf92";
</script>
<script type="text/javascript"
src="http://www.statcounter.com/counter/counter.js"></script><noscript><div
class="statcounter"><a title="drupal analytics"
href="http://statcounter.com/drupal/" target="_blank"><img
class="statcounter"
src="http://c.statcounter.com/7057807/0/86f5bf92/1/"
alt="drupal analytics" ></a></div></noscript>
<!-- End of StatCounter Code -->
</body>
</html>
|